Abstract
Flash evaporation processes are widely used in petroleum, food, chemical, power, and other industries to separate products or extract heat. The liquid is often entrained by non-condensing gas components. This study develops a multiphase, multicomponent, and pressure-driven phase-change-coupled model to numerically study water flash evaporation with non-condensing CO2. The model includes the mass, momentum, energy, volume of fluid (VOF), species transport, turbulence (RNG k-ε), modified phase-change Lee, and non-condensing CO2 release governing equations. The steam generation rate and mechanism for pure water and different concentrations of CO2 are considered. The results show that the numerical model can accurately predict the flash evaporation process and has high accuracy compared with the experimental data. Both the dissolved and entrained CO2 that are released can severely disturb the flow field, leading to an increase in the steam generation rate. Under a 1–10% volume concentration of dissolved CO2 and 0.0661–0.1688% mass concentration of entrained CO2, the maximum increase ratio of steam generation can reach 20%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.