Abstract
Cyclic steam generation experiments from a novel zeolite–water adsorption heat pump were carried out to demonstrate the feasibility of recycling hot water and low-grade waste gas. A direct heat exchange approach was introduced to enhance heat transfer and decrease system size. The experimental steam generation rate per unit mass of zeolite is 2.44×10−5 (kg-steam/kg-zeolite)/s at regeneration for 1200s, which is 10% larger than that for 3600s. A one-dimensional model describing transport phenomena during regeneration was developed to estimate temperature distributions and local water content in zeolite at the end of regeneration. Based on the numerical results, the mass of steam generated in the subsequent process was calculated. Then, the cyclic steam generation rate can be estimated. Calculated results on steam generation rate agree with the two sets of experimental data. The calculation reveals a maximum in the steam generation rate with the change in regeneration time. Predictions also show the possibility of high-pressure steam generation from this system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.