Abstract

In recent years, the threat to human health from bacteria in wastewater has attracted attention, and photocatalytic technology has emerged as a promising strategy for inactivating bacteria in water. Therefore, it is of great research value to develop a novel high-efficiency photocatalytic system with the visible light response. We successfully designed a double S-scheme heterojunction composite WO3/g-C3N4/BiOI (WCB) in this paper. The preparation of WCB composites was demonstrated by a series of characterizations, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The antibacterial effects of photocatalysts against representative Gram-negative strain Escherichia coli (E. coli) and Gram-positive strain Staphylococcus aureus (S. aureus) were tested under LED light irradiation. The novel photocatalyst presented excellent antibacterial properties, inactivating E. coli in 12 min and S. aureus in 20 min. The bacterial cell inactivation process was studied by scanning electron microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Active species capture experiments show that the active species present in the WCB composites in the process of inactivating bacteria are h+, e−, OH and O2−. In conclusion, the synthesized double S-scheme WCB photocatalyst exhibits remarkable photocatalytic antibacterial activity under LED light and has broad prospects for practical application in water antibacterial treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call