Abstract

The problem of regression estimation is considered with a specific regard for the distinction between interpolation and extrapolation. A neurofuzzy network named NFECH is proposed that is capable of extrapolating (and interpolating) with respect to the convex hull of a finite set of input samples X sub Ropfn. The geometrical construction of the proposed network is explained both mathematically and graphically. The illustrations explain how the particular parts of the construction work, and also show the final surfaces of the obtained models. The method is tested on artificial datasets generated from mathematical functions according to various statistical distributions. Also, comparisons to the commonly used radial basis function (RBF), multilayered perceptron (MLP) neural networks, and to fuzzy rule interpretation (FRI)/fuzzy rule extrapolation (FRE) approach are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.