Abstract
AbstractThis paper presents multi‐layer perceptron (MLP) and radial basis function (RBF) neural networks (NNs) based methods for the estimation of the critical clearing time (tcr) as an index for power systems transient stability analysis (TSA). The tcr evaluation involves elaborate computations that often include time‐consuming solutions of nonlinear on‐fault and post‐fault systems equations. Knowing that for a particular fault scenario (contingency), the tcr is a function of the pre‐fault system operating point, the objective of this paper is to show how one may develop the MLP and the RBF NNs based methods for estimating the tcr by using only the pre‐fault operating conditions as the inputs of the NNs. The paper uses the proposed MLP and RBF NNs based methods to estimate the tcr under different topological as well as operating conditions of the 10‐machane 39‐bus New England test power system, and results are given. The simulation results show that both NNs are able to retain past learned information almost instantaneously. However, compared to the RBF NN, the MLP NN makes us have a more accurate estimation for the tcr. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.