Abstract
Herein, we constructed a label-free ratiometric fluorescence biosensing strategy for the determination of butyrylcholinesterase (BChE) activity and organophosphorus (OPs) concentration. BChE promoted the hydrolysis of iodized s-butyrylthiocholine (BTCh) into a reducing substance thiocholine, which can decompose CoOOH nanosheets (CoOOH NSs) to Co2+. Subsequently, the single-stranded DNA (ssDNA) on the surface of CoOOH NSs was released. Then, ssDNA hybridized with hairpin DNA (h-DNA) and triggered the target recycling amplification process, producing large amounts of G-quadruplex. After adding thioflavin T (ThT), the target BChE was converted into activatable G-quadruplex/ThT with an amplified yellow fluorescence signal. The addition of OPs could significantly inhibit the hydrolysis of BTCh by BChE and thus unable to produce the yellow fluorescence G-quadruplex/ThT complex. Throughout the entire process, the fluorescence intensity of Hg-ZnSe QDs as a reference signal remained unchanged at 630 nm. Furthermore, this work provided an effective approach for detecting the BChE activity in serum samples and OPs in fruits and vegetables.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have