Abstract

AbstractA selective and sensitive electrochemical enzyme‐free sensor for dopamine (DA) was prepared, containing carbon nanomaterials, gold nanoparticles (GNPs) and room‐temperature ionic liquid of 1‐butyl‐3‐methylimidazolium tetrafluor (BmimBF4). The peaks of DA, ascorbic acid (AA) and uric acid (UA) can be well separated by optimization of pH condition and carbon nanomaterials.Multi‐walled carbon nanotubes (MWCNTs), single‐walled carbon nanotubes (SWCNTs), single‐walled carbon nanohorns (SWCNHs), carboxylated graphene (C‐GR), were chosen to compare the affection to DA detection. The catalytic effect was SWCNTs>MWCNTs>C‐GR≈SWCNHs. It showed carbon nanotube materials with electron acceleration channels play the key role in catalytic performance. The pH condition also influenced detection, all the redox peak potentials of DA, UA, and AA had a negative shift as the pH changed from low to high, but the amplitude of the shift was different. At pH 1, the three anodic peaks are separated ca.0.24 V and 0.20 V. Under optimum conditions linear calibration graphs were obtained over the DA concentration range 0.2 to 20 μM.The modified electrode was applied for the assay of spiked DA in blood serum and human urine.This work studied the influence of carbon nanomaterials on DA detection and provided a simple approach to selectively detect dopamine in the presence of AA and UA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.