Abstract
Surface modification is believed to be one of the most effective solutions to prevent thrombus formation associated with mechanical heart valves. Herein, we report, for the first time, the fabrication of a gradient cobblestone pattern on the pyrolytic carbon (PyC) surface aiming to improve its anti-thrombotic properties. A unique cobblestone pattern with gradient changing interspacing was generated on the PyC surface through laser etching. After coating with fluorosilane, the surface exhibited a water contact angle gradient ranging from 110 to 173°. The morphological and physicochemical properties, mechanical durability, drag reduction, in vitro anti-thrombotic properties, and in vivo biocompatibility of the surface were investigated to evaluate its potential as a heart valve replacement. It was found that the hydrophobic gradient wettability surface exhibited an excellent self-driving effect and mechanical durability, significantly reduced hemolysis rate and platelet adhesion, and prolonged coagulation time compared to the counterpart without gradient wettability. Furthermore, the gradient wettability surface demonstrated excellent in vivo biocompatibility. These findings are important for the design of artificial heart valves with improved anti-thrombotic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.