Abstract
The development of metal organic framework (MOF)-based π-π conjugated structures capable of effectively transforming H2O from humid air to •OH radicals for VOCs photodegradation is a significant but difficult task. Herein, an amino-ionic liquid (NH2-IL) based dual-mode bridging strategy was proposed to connect 3D-graphene with NH2-MIL-125 forming IL-3DGr/NM(Ti) nanohybrids for advanced acetaldehyde photodegradation. The rational integration of these components was responsible for: (1) maintaining π-π conjugated electron transport system; (2) generating abundant coordinatively unsaturated sites and oxygen vacancies; (3) increasing surface area of the nanohybrids. With these attributes, IL-3DGr/NM(Ti) demonstrated enhanced charge separation and transportation electrochemical impedance spectroscopy (EIS): 7-times), acetaldehyde adsorption (22 %), light absorption (bandgap: 1.51 eV). The rapid H2O adsorption and photoconversion to •OH radicals by IL-3DGr/NM(Ti) enabled it to demonstrate superior CH3CHO photodegradation rate under high humidity, surpassing many state-of-the-art photocatalysts by 9 to 187 times under static air conditions and with nearly similar catalyst dosages* (photocatalyst weight and initial acetaldehyde concentration (mg ppm−1) ratio). Interestingly, the IL-3DGr/NM(Ti) photocatalytic activity was enhanced by increasing RH% up-to 80 %. Besides, the nanohybrids demonstrated tremendous stability, with only a 3.9 % decline observed after 5 consecutive-cycles. This strategy provides new prospects to improve the compatibility of graphene/MOF materials for futuristic photoelectrical applications under high humidity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.