Abstract

In this study, leveraging the tunable surface groups of MXene, the two-dimensional (2D) Nb2CTx with OH terminal (NC) was synthesized. 2D ZnIn2S4 (ZIS) nanosheets were prepared with the aid of sodium citrate, enhancing the exposure ratio of active (110) facet. On this basis, 2D/2D ZnIn2S4/Nb2CTx heterojunctions were fabricated to improve photocatalytic hydrogen evolution reaction (HER) performance. The optimized 6 wt%Nb2CTx/ZnIn2S4-450 (6NC/ZIS-450) photocatalyt exhibits a remarkable HER rate of 3603 μmol g−1h−1, which is 10 times superior to that of the original ZnIn2S4. Its apparent quantum efficiency (AQE) at 380 nm reaches 14.9 %. Meanwhile, even after 5 rounds of HER, the activity of 2D/2D ZnIn2S4/Nb2CTx heterojunction remained at 90 %, far superior to that of pure ZnIn2S4 (34 % and 31 %). Energy band structure analysis and density functional theory (DFT) calculation indicate that Nb2CTx adsorbed with OH exhibit a low work function. By serving as a hole cocatalyst, it effectively boosts the photocatalytic HER rate of ZnIn2S4/Nb2CTx heterojunction and inhibits the photocorrosion of ZnIn2S4. This unique insight, via hole transport highways and increased exposure of active facets, effectively enhances the activity and stability of sulfides photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.