Abstract

In this research 1, 10 - phenanthroline functionalized CaFe2O4 - starch was employed as a magnetic ion-imprinted polymer (IIP) for highly selective targeting toxic Pb2+ ions from aqueous media. VSM analysis revealed that the sorbent has magnetic saturation of 10 emu g−1 which is appropriate for magnetic separation. Moreover, TEM analysis confirmed that the adsorbent is composed of particles with a mean diameter of 10 nm. According to XPS analysis, lead coordination with phenanthroline is the main adsorption mechanism that is along with electrostatic interaction. A maximum adsorption capacity of 120 mg g−1 was obtained within 10 min at a pH of 6 and an adsorbent dosage of 20 mg. Kinetic and isotherm studies showed that lead adsorption followed the pseudo-second–order and Freundlich models, respectively. The selectivity coefficient of Pb (II) relative to Cu(II), Co(II), Ni(II), Zn(II), Mn(II), and Cd(II) was 4.7, 14, 20, 36, 13 and 25, respectively. Moreover, the IIP represents the imprinting factor of 1.32. The sorbent showed good regeneration after five cycles of the sorption/desorption process with an efficiency of >93 %. Finally represented IIP was used for lead preconcentration from various matrices i.e., water, vegetable, and fish samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call