Abstract
To improve the accuracy of retinal vessel segmentation, a retinal vessel segmentation algorithm for color fundus images based on back-propagation (BP) neural network is proposed according to the characteristics of retinal blood vessels. Four kinds of green channel image enhancement results of adaptive histogram equalization, morphological processing, Gaussian matched filtering, and Hessian matrix filtering are used to form feature vectors. The BP neural network is input to segment blood vessels. Experiments on the color fundus image libraries DRIVE and STARE show that this algorithm can obtain complete retinal blood vessel segmentation as well as connected vessel stems and terminals. When segmenting most small blood vessels, the average accuracy on the DRIVE library reaches 0.9477, and the average accuracy on the STARE library reaches 0.9498, which has a good segmentation effect. Through verification, the algorithm is feasible and effective for blood vessel segmentation of color fundus images and can detect more capillaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.