Abstract
Structural changes in the retinal blood vessels provide important information about retinal diseases. Therefore, computer-aided segmentation of retinal blood vessels has become an active area of research in last decades. Due to the close contrast between the retinal blood vessels and the retinal background, robust methods should be developed to detect retinal blood vessels with high accuracy. In this work, artificial bee colony (ABC) algorithm which provides effective solutions to engineering problems has been applied to the retinal vessel segmentation. Clustering based ABC (basic ABC), quick-ABC (Q-ABC) and modified ABC (MR-ABC) algorithms have been analyzed for accurate segmentation of retinal blood vessels and their performances were compared. The simulations have been realized on the normal and abnormal retinal images taken from the DRIVE database. Simulation results and statistical analyses represent that ABC based approaches are stable and able to reach to optimal clustering performance with higher convergence rates. As a result it can be concluded that ABC based approaches can successfully be used for accurate segmentation of retinal blood vessels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.