Abstract

Rapid urbanization has led to deteriorated wetland water quality, reduced biodiversity, and fragmented wetland landscapes, which seriously threaten the sustainable development of regional ecology. Based on land use data of Dongying City, Shandong Province, in 2020, this study selected the landscape disturbance degree and landscape fragility index to construct a landscape ecological risk evaluation model and to analyze the spatial distribution characteristics of landscape ecological risk in Dongying City in 2020. The MSPA-Conefor-MCR model was used to extract the ecological network of wetlands in Dongying City, and the topological structure indices were quantitatively analyzed. Combined with the actual situation within the study area, the source sites to be optimized were identified by risk zoning and source importance; the ecological resistance surface was modified using landscape ecological risk, and the ecological network was optimized by simulating edge increase in order to evaluate the robustness of the ecological network before and after optimization and to verify the edge increase effect. The results show that the ecological risk in Dongying is high, mainly distributed in the central region and extending to the northeast, southeast, southwest, and northwest. A total of 131 ecological source sites (6 core and 125 resting-stone source sites) and 180 ecological corridors were extracted, and the whole ecological network was found to be less stable and to have stronger network heterogeneity using a topological analysis. By simulating 11 additional edges, the robustness of the optimized ecological network was significantly improved. Optimizing the simulated-edge increase can enhance the smoothness of ecological energy flow, which can provide a scientific basis for the construction of the ecological security pattern of wetlands in Dongying City.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call