Abstract

With the aim to develop a replicating vector system for the delivery of HIV-1 antigens on the basis of an apathogenic foamy virus we recently showed that immunisation with purified recombinant hybrid antigens composed of the feline foamy virus Bet protein and parts of the transmembrane envelope protein of HIV-1 induced antibodies with an epitope specificity identical to that of the broadly neutralising antibody 2F5 (Mühle et al., Immunol Res., 2013, 56:61–72). Here we set out to further improve the HIV-1 inserts consisting of the membrane proximal external region (MPER) and the fusion peptide proximal region (FPPR) by stepwise shortening distinct linker residues between both domains. In a subset of these antigens, enhanced recognition by 2F5 and 4E10 was observed, indicating that a specific positioning of FPPR and MPER domains is critical for improved antibody binding. Introduction of these optimised inserts as well as of the MPER domain alone into the feline foamy virus backbone was compatible with virus replication, giving viral titres similar to wild-type virus after extended passaging. Most importantly, expression of the HIV-1 transgenes in infected feline CRFK cells remained stable in three out of four constructs and was detectable after serial passages for several weeks. These data encourage further testing of these vectors in vivo, which may allow insights into the necessity of affinity maturation for the induction of broadly reactive HIV-1 antibodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.