Abstract
We present a new variant of Lane-Riesenfeld algorithm for curves and surfaces both. Our refining operator is the modification of Chaikin/Doo-Sabin subdivision operator, while each smoothing operator is the weighted average of the four/sixteen adjacent points. Our refining operator depends on two parameters (shape and smoothing parameters). So we get new families of univariate and bivariate approximating subdivision schemes with two parameters. The bivariate schemes are the nontensor product schemes for quadrilateral meshes. Moreover, we also present analysis of our families of schemes. Furthermore, our schemes give cubic polynomial reproduction for a specific value of the shape parameter. The nonuniform setting of our univariate and bivariate schemes gives better performance than that of the uniform schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.