Abstract
In this paper we construct an edge based, or 1-form, subdivision scheme consistent with $\sqrt{3}$ subdivision. It produces smooth differential 1-forms in the limit. These can be identified with tangent vector fields, or viewed as edge elements in the sense of finite elements. In this construction, primal (0-form) and dual (2-form) subdivision schemes for surfaces are related through the exterior derivative with an edge (1-form) based subdivision scheme, amounting to a generalization of the well known formule de commutation. Starting with the classic $\sqrt{3}$ subdivision scheme as a 0-form subdivision scheme, we derive conditions for appropriate 1- and 2-form subdivision schemes without fixing the dual (2-form) subdivision scheme a priori. The resulting degrees of freedom are resolved through spectrum considerations and a conservation condition analogous to the usual moment condition for primal subdivision schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.