Abstract

Recently, increasing studies have shown that non-coding RNAs are closely associated with the progression and metastasis of cancer by participating in competing endogenous RNA (ceRNA) networks. However, the role of survival-associated ceRNAs in breast cancer (BC) remains unknown. The Gene Expression Omnibus database and The Cancer Genome Atlas BRCA_dataset were used to identify differentially expressed RNAs. Furthermore, circRNA-miRNA interactions were predicted based on CircInteractome, while miRNA-mRNA interactions were predicted based on TargetScan, miRDB, and miRTarBase. The survival-associated ceRNA networks were constructed based on the predicted circRNA-miRNA and miRNA-mRNA pairs. Finally, the mechanism of miRNA-mRNA pairs was determined. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of survival-related mRNAs were performed using the hypergeometric distribution formula in R software.The prognosis of hub genes was confirmed using gene set enrichment analysis. Based on the DE-circRNAs of the top 10 initial candidates, 162 DE-miRNAsand 34 DE-miRNAs associated with significant overall survival were obtained. The miRNA target genes were then identified using online tools and verified using the Cancer Genome Atlas (TCGA) database. Overall, 46 survival-associated DE-mRNAs were obtained. The results of GO and KEGG pathway enrichment analyses implied that up-regulated survival-related DE-mRNAs were mostly enriched in the "regulation of cell cycle" and "chromatin" pathways, while down-regulated survival-related DE-mRNAs were mostly enriched in "negative regulation of neurotrophin TRK receptor signaling" and "interleukin-6 receptor complex" pathways. Finally, the survival-associated circRNA-miRNA-mRNA ceRNA network was constructed using 34 miRNAs, 46 mRNAs, and 10 circRNAs. Based on the PPI network, two ceRNA axes were identified. These ceRNA axescould be considered biomarkers for BC.GSEA results revealed that the hub genes were correlated with "VANTVEER_BREAST_CANCER_POOR_PROGNOSIS", and the hub genes were verified using BC patients' tissues. In this study, we constructed a circRNA-mediated ceRNA network related to BC. This network provides new insight into discovering potential biomarkers for diagnosing and treating BC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call