Abstract
Rational design and exploration of oxygen evolution reaction (OER) electrocatalysts with exceptional performance are crucial for the advancement of the hydrogen energy economy. In this study, vanadium/cobalt (V/Co) dual-doped nickel sulfide (Ni3S2) nanowires were synthesized on a nickel foam (NF) substrate to overcome the sluggish kinetics typically associated with OER. The resulting catalyst exhibited outstanding electrocatalytic activity towards OER in a 1.0 M KOH electrolyte, with a minimal overpotential of 155 and 263 mV, the current densities of 10 and 100 mA cm−2 can be achieved effortlessly. Importantly, this catalyst demonstrated remarkable stability over extended periods, maintaining its performance for 25 h under constant current density, 55 h under continuously varying current density, and even after undergoing 2000 cycles of cyclic voltammetry (CV), which had surpassed those of most non-noble metal electrocatalysts. The X-ray photoelectron spectroscopy and density functional theory analyses confirmed that the co-doping of Co and V redistributed the electron of Ni, leading to improvements in the d-band center, structural characteristics, and free energy landscapes of adsorbed intermediates. This work presents a novel strategy, based on the connection between electronic structure and catalytic properties, in the design of double-doped catalysts for efficient OER.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.