Abstract
Constructing synergistic active sites and optimizing the cooperative adsorption energies for hydrogen and hydroxyl based intermediates are two essential strategies to improve the sluggish kinetics of hydrogen evolution reaction (HER) in alkaline medium. However, it is still in its infancy to simultaneously achieve these goals, especially for designing a well-defined carrier with multiple hydroxyl adsorption sites. Herein, the Ni(HCO3)2 nanoplates (NHC) with horizontal interfaces sites of Ni-terminated NiO, NiOOH, NiCOO, and Ni(OH)2 were employed as the hydroxyl adsorption active sites, which could anchor Pt particles with hydrogen adsorption active sites, constructing the synergistic active sites (NHC-Pt) for HER catalysis. Evidenced by X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS), the NHC could affect the chemical state and electronic structure of Pt particles by forming bond of Pt-O which could reduce the reaction energy barriers, facilitate the adsorption of hydrogen and establishment of H–H bond. Furthermore, density functional theory (DFT) theoretical calculation revealed that the related process of hydroxide was the rate-determining step. It is demonstrated the hydroxyl group presents the lowest energy barrier for desorption in the process of HER when the gradual desorption process could be described as a migration from Ni(HCO3)2·OH directly or via other Ni-based systems formed after partial decomposition of nickel hydrocarbonate to Ni(OH)2···OH with following desorption. As a result, the NHC-Pt hierarchical nanostructure demonstrated superior activity towards HER in a pH-universal solution. This enhancement can be attributed to the optimized electronic structure of Pt, the migration of hydroxyl group on NHC substrates, and the synergistic effects between the NHC carrier and Pt particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.