Abstract

Promoting water dissociation and H intermediate desorption play a pivotal role in achieving highly efficient hydrogen evolution reaction (HER) in alkaline media but remain a great challenge. Herein, we rationally develop a unique W-doped NiSx/Ni heterointerface as a favorable HER electrocatalyst which was directly grown on the Cu nanowire foam substrate (W-NiSx/Ni@Cu) by the electrodeposition strategy. Benefiting from the rational design of the interfaces, the electronic coupling of the W-NiSx/Ni@Cu can be efficiently modulated to lower the HER kinetic barrier. The obtained W-NiSx/Ni@Cu exhibits an enhanced HER activity with a low overpotential of 38 mV at 10 mA cm−2 and a small Tafel value of 27.5 mV dec−1, and high stability during HER catalysis. In addition, in-situ Raman spectra reveal that the Ni2+ active sites preferentially adsorb OH intermediate. The theoretical calculation confirms that the water dissociation is accelerated by the construction of W-NiSx/Ni heterointerface and H intermediate desorption can be also promoted by H spillover from S active sites in W-NiSx to Ni active sites in metal Ni. This work offers a valuable reference for rational designing heterointerface of electrocatalysts and provides an available method to accelerate the HER kinetics for the ampere-level current density under low overpotential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.