Abstract

Interfacial chemical modification is an effective strategy to adjust the strong Coulombic ion-lattice interactions with high valence cations experienced by electrode materials, facilitating the reaction kinetic. In this paper, a simple and fast surface oxygen implantation strategy was designed to adjust the electronic structure of stainless steel (SS) supported vanadium diselenide (VSe2) nanosheets and form a surface protective film, which effectively accelerates the reaction kinetics of Zn2+ and extends the cycle life of the battery. It is demonstrated that the conductivity, pseudocapacitance and specific capacity can be tuned by selectively introducing oxygen species to the surface, which provides an important reference for the design of electrodes with controlled surface chemistry. Density functional theory (DFT) calculations also confirm that the electronic structure can be adjusted by surface oxygen injection strategy, which not only improves the conductivity, but also adjusts the adsorption energy, thus providing favorable conditions for zinc ion storage. Benefiting from the selenium vacancies and pores generated by the removal of part of selenium, and the oxide film formed on the surfaces, the VSe2-xOx-SS-30 electrode showed higher specific capacity (188.4 mAh/g at 0.5 A g−1 after 50 cycles), better rate performance (107.1 mAh/g at 4 A g−1) and more satisfactory cycling stability (83.1 mAh/g at 5 A g−1 after 1800 cycles) than VSe2-SS electrode. Importantly, the flexible quasi-solid-state VSe2-xOx-SS-30//Zn battery also exhibits high specific capacity and excellent environmental adaptability. Furthermore, the zinc (de)intercalation and transformation reactions mechanism was revealed by some ex-situ/in-situ techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.