Abstract

Recently, advanced development of facial manipulation techniques threatens web information security, thus, face forgery detection attracts a lot of attention. It is clear that both spatial and temporal information of facial videos contains the crucial manipulation traces, which are inevitably created during the generation process. However, most existing face forgery detectors only focus on the spatial artifacts or the temporal incoherence, and they are struggling to learn a significant and general kind of representations for manipulated facial videos. In this work, we propose to construct spatial-temporal graphs for fake videos to capture the spatial inconsistency and the temporal incoherence at the same time. To model the spatial-temporal relationship among the graph nodes, a novel forgery detector named Spatio-Temporal Graph Network (STGN) is proposed, which contains two kinds of graph-convolution-based units, the Spatial Relation Graph Unit (SRGU) and the Temporal Attention Graph Unit (TAGU). To exploit spatial information, the SRGU models the inconsistency between each pair of patches in the same frame, instead of focusing on the low-level local spatial artifacts which are vulnerable to samples created by unseen manipulation methods. And, the TAGU is proposed to model the long-distance temporal relation among the patches at the same spatial position in different frames with a graph attention mechanism based on the inter-node similarity. With the SRGU and the TAGU, our STGN can combine the discriminative power of spatial inconsistency and the generalization capacity of temporal incoherence for face forgery detection. Our STGN achieves state-of-the-art performances on several popular forgery detection datasets. Extensive experiments demonstrate both the superiority of our STGN on intra manipulation evaluation and the effectiveness for new sorts of face forgery videos on cross manipulation evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.