Abstract

The extremely weak heterointerface construction of high-entropy materials (HEM) hinders them being the electromagnetic wave (EMW) absorbers with ideal properties. To address this issue, this study proposes multiphase interfacial engineering and results in a multiphase-induced interfacial polarization loss in multielement sulfides. Through the selection of atoms with diverse reaction activities, the multiphase interfacial components of CuS (1 0 5), Fe0.5 Ni0.5 S2 (2 1 0), and CuFe2 S3 (2 0 0) are constructed to enhance the interfacial polarization loss in multielement Cu-based sulfides. Compared with single-phase high-entropy Zn-based sulfides (ZnFeCoNiCr-S), the multiphase Cu-based sulfides (CuFeCoNiCr-S) possess optimized EMW absorption properties (effective absorption bandwidth (EAB) of 6.70GHz at 2.00mm) due to the existence of specific interface of CuS (1 0 5)/CuFe2 S3 (2 0 0) with proper EM parameters. Furthermore, single-phase ZnFeCoNiCr-S into FeNi2 S4 (3 1 1)/(Zn, Fe)S (1 1 1) heterointerface through 400°C heat-treated is decomposed. The EMW absorption properties are enhanced by strong interfacial polarization (EAB of 4.83GHz at 1.45mm). This work reveals the reasons for the limited EMW absorption properties of high-entropy sulfides and proposes multiphase interface engineering to improve charge accumulation and polarization between specific interfaces, leading to the enhanced EMW absorption properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call