Abstract

Fiber-shaped energy storage devices with light weight, superflexibility, and weavability demonstrate promising prospects for application in wearable and portable electronics. Especially, fiber-shaped aqueous rechargeable zinc ion batteries (FARZIBs), which can facilitate the development of wearable electronic products owing to their high safety, low cost, environmental friendliness. Nevertheless, it is very challenging to achieve high rate capability, energy density, and cycling performance simultaneously for the FARZIBs. Herein, a high-performance FARZIB is created from vanadium-based metal-organic frameworks (MOFs) derived vanadic oxide (V2O5) nanowire-bundle arrays (NBAs) grown on highly conductive carbon nanotube fibers (CNTFs) directly as the binder-free cathode. Profiting from high specific area and porous structure of MOFs, as well as arrays structure and binder-free features, our as-assembled FARZIBs exhibited a high capacity of 0.71 mAh cm−2 at a current density of 2 mA cm−2, and demonstrated outstanding rate capability and prominent cycling performance. Moreover, the FARZIBs delivered an extremely high energy density of 215 mWh cm−3 at a power density of 600 mW cm−3. Therefore, our work brings new prospects for the next generation of wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.