Abstract

The electroreduction of CO2 (CO2RR) into value-added chemicals is a sustainable strategy for mitigating global warming and managing the global carbon balance. However, developing an efficient and selective catalyst is still the central challenge. Here, we developed a simple two-step pyrolysis method to confine low-valent Ni-based nanoparticles within nitrogen-doped carbon (Ni-NC). As a result, such Ni-based nanoparticles can effectively reduce CO2 to CO, with a maximum CO Faradaic efficiency (FE) of 98% at an overpotential of 0.8 V, as long as good stability. Experimental and the density functional theory (DFT) calculation results reveal that low-valent Ni plays a key role in activity and selectivity enhancement. This study presents a new understanding of Ni-based CO2RR, and provides a simple, scalable approach to the synthesis of low-valent catalysts towards efficient CO2RR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call