Abstract
The decomposition of unitary representations of a discrete group obtained by induction from a subgroup involves commensurators. In particular Mackey has shown that quasi-regular representations are irreducible if and only if the corresponding subgroups are self-commensurizing. The purpose of this work is to describe general constructions of pairs of groups Γ0 with Γ its own commensurator in Γ. These constructions are then applied to groups of isometries of hyperbolic spaces and to lattices in algebraic groups.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have