Abstract

The electrochemical CO2 reduction reaction (CO2RR) has emerged as a promising approach for sustainable carbon cycling and valuable chemical production. Various methods and strategies have been explored to boost CO2RR performance. One of the most promising strategies includes the construction of stable ionic interfaces on metallic or molecular catalysts using organic or inorganic cations, which has demonstrated a significant improvement in catalytic performance. The stable ionic interface is instrumental in adjusting adsorption behavior, influencing reactive intermediates, facilitating mass transportation, and suppressing the hydrogen evolution reaction, particularly under acidic conditions. In this Perspective, we provide an overview of the recent advancements in building ionic interfaces in the electrocatalytic process and discuss the application of this strategy to improve the CO2RR performance of metallic and molecular catalysts. We aim to convey the future trends and opportunities in creating ionic interfaces to further enhance carbon utilization efficiency and the productivity of CO2RR products. The emphasis of this Perspective lies in the pivotal role of ionic interfaces in catalysis, providing a valuable reference for future research in this critical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.