Abstract
In this paper a convergent series expansion is constructed to solve the prescribed mean curvature equation for n-dimensional hypersurfaces in n+1 dimensional Euclidean or Minkowskian space(time) which are graphs of a smooth real function u, and whose mean curvature function H is not too large in Hoelder norm, and integrable. Our approach is inspired by the Maxwell-Born-Infeld theory of electromagnetism in Minkowski spacetime, for which our method yields the first systematic way of explicitly computing the electrostatic potential u for regular charge densities proportional to H and small Born parameter.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have