Abstract
We use the matrix model -- gauge theory correspondence of Dijkgraaf and Vafa in order to construct the geometry encoding the exact gaugino condensate superpotential for the N=1 U(N) gauge theory with adjoint and symmetric or anti-symmetric matter, broken by a tree level superpotential to a product subgroup involving U(N_i) and SO(N_i) or Sp(N_i/2) factors. The relevant geometry is encoded by a non-hyperelliptic Riemann surface, which we extract from the exact loop equations. We also show that O(1/N) corrections can be extracted from a logarithmic deformation of this surface. The loop equations contain explicitly subleading terms of order 1/N, which encode information of string theory on an orientifolded local quiver geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.