Abstract

We examine the equivalence between the Konishi anomaly equations and the matrix model loop equations in N=1* gauge theories, the mass deformation of N=4 supersymmetric Yang-Mills. We perform the superfunctional integral of two adjoint chiral superfields to obtain an effective N=1 theory of the third adjoint chiral superfield. By choosing an appropriate holomorphic variation, the Konishi anomaly equations correctly reproduce the loop equations in the corresponding three-matrix model. We write down the field theory loop equations explicitly by using a noncommutative product of resolvents peculiar to N=1* theories. The field theory resolvents are identified with those in the matrix model in the same manner as for the generic N=1 gauge theories. We cover all the classical gauge groups. In SO/Sp cases, both the one-loop holomorphic potential and the Konishi anomaly term involve twisting of index loops to change a one-loop oriented diagram to an unoriented diagram. The field theory loop equations for these cases show certain inhomogeneous terms suggesting the matrix model loop equations for the RP2 resolvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call