Abstract

This article presents a new method for G2 continuous interpolation of an arbitrary sequence of points on an implicit or parametric surface with prescribed tangent direction and curvature vector, respectively, at every point. First, a G2 continuous curve is constructed in three-dimensional space. Then the curve is projected normally onto the given surface. The desired interpolation curve is just the projection curve, which can be obtained by numerically solving the initial- value problems for a system of first-order ordinary differential equations in the parametric domain for parametric case or in three-dimensional space for implicit case. Several shape parameters are introduced into the resulting curve, which can be used in subsequent interactive modification so that the shape of the resulting curve meets our demand. The presented method is independent of the geometry and parameterization of the base surface. Numerical experiments demonstrate that it is effective and potentially useful in numerical control (NC) machining, path planning for robotic fibre placement, patterns design on surface and other industrial and research fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.