Abstract

BackgroundWith the advance of large-scale omics technologies, it is now feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Current networking approaches are mainly focusing on building genetic networks at large without probing the interaction mechanisms specific to a physiological or disease condition. The aim of this study was thus to develop such a novel networking approach based on the relevance concept, which is ideal to reveal integrative effects of multiple genes in the underlying genetic circuit for complex diseases.ResultsThe approach started with identification of multiple disease pathways, called a gene forest, in which the genes extracted from the decision forest constructed by supervised learning of the genome-wide transcriptional profiles for patients and normal samples. Based on the newly identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was used to define the degree of genetic relationship between two molecular determinants. We applied the proposed method to analyze a publicly available microarray dataset for colon cancer. The results demonstrated that the colon cancer-specific gene network captured the most important genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation, mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of the topological architecture of the network identified three known hub cancer genes [interleukin 8 (IL8) (p ≈ 0), desmin (DES) (p = 2.71 × 10-6) and enolase 1 (ENO1) (p = 4.19 × 10-5)], while two novel hub genes [RNA binding motif protein 9 (RBM9) (p = 1.50 × 10-4) and ribosomal protein L30 (RPL30) (p = 1.50 × 10-4)] may define new central elements in the gene network specific to colon cancer. Gene Ontology (GO) based analysis of the colon cancer-specific gene network and the sub-network that consisted of three-way gene interactions suggested that tumourigenesis in colon cancer resulted from dysfunction in protein biosynthesis and categories associated with ribonucleoprotein complex which are well supported by multiple lines of experimental evidence.ConclusionThis study demonstrated that IL8, DES and ENO1 act as the central elements in colon cancer susceptibility, and protein biosynthesis and the ribosome-associated function categories largely account for the colon cancer tumuorigenesis. Thus, the newly developed relevancy-based networking approach offers a powerful means to reverse-engineer the disease-specific network, a promising tool for systematic dissection of complex diseases.

Highlights

  • With the advance of large-scale omics technologies, it is feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases

  • This study demonstrated that interleukin 8 (IL8), DES and enolase 1 (ENO1) act as the central elements in colon cancer susceptibility, and protein biosynthesis and the ribosome-associated function categories largely account for the colon cancer tumuorigenesis

  • We demonstrated that the colon cancer-specific gene network captured the most important genetic interplays in several cellular processes, such as differentiation, mitogenesis, proliferation, apoptosis, inflammation and immunity, which are known to be pivotal for tumourigenesis

Read more

Summary

Introduction

With the advance of large-scale omics technologies, it is feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Bell and Wang [6] have reviewed that relevance concepts have evolved considerably, from a simple and intuitive relevance concept for marginally filtering a feature to the sophisticated mathematical formalism of the concept that is quantitative and normalized, and which aims to capture the reality of biological complexities (epistasis or gene-gene interactions). Distinguishing it from the correlation metric commonly used for describing the relationships between genes, the relevance concept can be used to characterize target-dependent behaviour and properties of feature genes, and is well suited to identify novel disease-relevance genes and to construct disease-specific gene networks. The former has already been well addressed in the previous report [5], and the latter was the focus of the present study

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call