Abstract
Photocatalytic coupling technologies have emerged as popular strategies to increase the treatment efficiency of dye-containing wastewater. Herein, the Z-scheme Co3O4/BiOBr heterojunction (Z-CBH) was constructed and developed as a photocatalytic peroxydisulfate (PDS) activator for the degradation of high-concentration Rhodamine B (RhB). Multiple testing techniques were employed to confirm the formation of Z-CBHs. When 0.1 g·L-1 of Z-CBH20 and 1.0 mmol·L-1 of PDS were added simultaneously under simulated sunlight irradiation, the RhB degradation efficiency could approach 91.3%. Its reaction rate constant (0.01231 min-1) was much beyond the sum of those in the Z-CBH20/light system (0.00436 min-1) and the PDS/light system (0.0062 min-1). h+, •OH, •O2-, SO4•-, and 1O2 were detected as the dominant reactive species for RhB degradation. The potential mechanism of photocatalytic PDS oxidation was proposed. The possible intermediates were determined by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry assisted with density functional theory and Fukui theory. The possible degradation pathways of RhB degradation were put forward. The toxicological properties of RhB and its intermediates were evaluated by quantitative structure-activity relationship prediction. This work will not only provide a reference for developing photocatalytic persulfate activators but also gain an insight into the degradation pathways of RhB and the toxicity of its intermediates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.