Abstract
AbstractInterfacial engineering and defect modulation can provide abundant active sites for catalysts to further boost the catalysis process. In this work, we develop a strategy to grow multi‐heterogeneous cobalt phosphide (CoP) nanorods with rich interfaces and defects along the one‐dimensional (1D) nanostructure by dual incorporation of Fe and Ru (CoFeP@Ru). Such a catalyst exhibits high activity and stability towards the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with overpotentials of only 38 mV in 0.5 M H2SO4 and 48 mV in 1.0 M KOH for HER, and an overpotential of 340 mV in 0.1 M KOH for OER at 10 mA cm−2. Finally, as the bifunctional catalyst, an alkali electrolyzer is assembled and delivers at a low cell voltage, with almost 100 % Faradaic efficiency. Our experimental results demonstrate that Fe incorporation can disturb or even break the periodic structure of cobalt phosphides, causing a redistribution of the electronic structure and electron density of activity sites, while Ru can significantly enhance the catalytic kinetics, as well as electrochemical and mechanical stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.