Abstract
Abstract Three pilot systems of a constructed wetland were assessed to advance the urban reuse of greywater for household gardening in areas of the world representative of Africa's Sahel (one unplanted and two planted with local species, namely Andropogon gayanus and Chrysopogon zizanioides). Principal component analysis showed planted systems provided higher removal efficiencies than the unplanted system and A. gayanus performed better for treating most water quality parameters. As expected, removal efficiencies for suspended solids (SS) and chemical oxygen demand (COD) were greater than 90% in all filters. The removal of five-day biochemical oxygen demand (BOD5) was, however, significantly greater in the filter planted with A. gayanus than in the unplanted control. For plant-beneficial parameters such as nutrients (NO3−, NO2−, NH4+, and PO43−), the removal in the planted filters was significantly higher than in the unplanted filter (>90% versus 73%–78%). The reduction of fecal coliforms was significantly greater in the two planted systems and exceeded 2.5 log10 removal. Analysis of the microbial water quality characteristics showed the concentration of fecal microbial indicators would achieve WHO guidelines for restricted irrigation with retention of some embedded nutrients, thus reducing pressures on areas experiencing climate variability, water scarcity, and land degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.