Abstract

Refractory organic pollutants' degradation efficiency strongly depends on the amount of intermediate active species (hydroxyl radical and superoxide radical) in the photoelectrocatalytic (PEC) process. Here, the various amount of Sn3O4 nanosheets is adhered to the surface of Co3O4 nanowires by a simple hydrothermal process to assemble the Co3O4-Sn3O4 hierarchical nanoflower-tree architecture. The as-obtained Co3O4-Sn3O4-2.0 (2 mmol tin salt precursor) photoelectrodes exhibited superior PEC dye degradation efficiency than bare Co3O4 photoelectrode because the Co3O4-Sn3O4-2.0 hierarchical architecture has large electrochemical active, fast interfacial carrier transport, low electrochemical resistance, a proper bandgap, high electron-hole separation efficiency, and electron-deficient surface. Especially, Co3O4-Sn3O4-2.0 hierarchical architecture can promote the generation of intermediate active species (hydroxyl radical and superoxide radical) as the demonstration from the energy band structures, which play the predominant role in the PEC process. Additionally, the electron-deficient surface enhances the interaction with active species and increases stability during the PEC process. Overall, Co3O4-Sn3O4-2.0 architecture demonstrated the best PEC degradation rate (~87.5% in 2 h) and long-term stability (~13,000 s) in 0.1 mol/L Na2SO4 toward the accelerated degradation of reactive brilliant blue KN-R. The present work provides a feasible and straightforward route to obtain highly efficient PEC photoanode through a rational combination of Co3O4 and Sn3O4 with proper energy band tuning, which will guide other heterojunction designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call