Abstract

The aim of this study is to augment thermal transport in latent heat thermal energy storage (LHTES) system by the optimum allocation of metal foam-phase change material (PCM) composite. This study emphasizes on the optimal volume and distribution of metal foam-PCM composite (MFPC) to enhance melting performance without delay in the total melting time. Therefore, a MFPC is designed according to constructal theory. The fundamental principle of the theory is to configure high thermal conductivity agents at optimal thermal energy flow path for effective heat exchange. A numerical code based on local thermal nonequilibrium approach equipped enthalpy porosity method is formulated, and evaluated. The results of the proposed configuration show that the provision of MFPC only at high local temperature gradient enhances the conductive transport with improvement in the overall thermal transport. It is derived that the elimination of metal foam volume at low temperature gradient incorporates the advantageous effect of natural convective transport, which is seen to be suppressed. Additionally, the proposed configuration may increase the volume of PCM, thus, the TES capacity. It also reduces the total weight and economy of energy storage system. The overall melting rate is improved by 11.11% in comparison with the LHTES with full volume of this high thermal conductivity agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call