Abstract

In this paper, we propose the fine-grained geospatial knowledge graph (FineGeoKG), which can capture the neighboring relations between geospatial objects. We call such neighboring relations strong geospatial relations (SGRs) and define six types of SGRs. In FineGeoKG, the vertices (or entities) are geospatial objects. The edges (or relations) can have “sgr” labels together with properties, which are used to quantify SGRs in both topological and directional aspects. FineGeoKG is different from WorldKG, Yago2Geo, and other existing geospatial knowledge graphs, since its edges can capture the spatial coherence among geospatial objects. To construct FineGeoKG efficiently, the crucial problem is to find out SGRs. We improve the existing geospatial interlinking algorithm in order to find out SGRs faster. To answer SGR queries efficiently, we design an index to organize the SGR edges and improve the binary join method for subgraph matching. We conduct experiments on the real datasets and the experimental results show that the proposed algorithm is more efficient than the baseline algorithms. We also demonstrate the usefulness of FineGeoKG by presenting the results of complicated spatial queries which focus on structural and semantic information. Such queries can help researchers (for example, ecologists) find groups of objects following specific spatial patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.