Abstract

Mineral assemblages containing Cu-Bi sulfosalts, Bi chalcogenides, and Ag-(Au) tellurides have been identified in the mid-Miocene Zhibula Cu skarn deposit, Gangdese Belt, southern Tibet. Different mineral assemblages from three locations in the deposit, including proximal massive garnet skarn, proximal retrogressed pyroxene-dominant skarn in contact with marble, and distal banded garnet–pyroxene skarn hosted in marble, are studied to constrain the evolution of the mineralization. Hypogene bornite contains elevated Bi (mean 6.73 wt.%) and co-exists in proximal andradite skarn with a second bornite with far lower Bi content, carrollite, Au-Ag tellurides (hessite, petzite), and wittichenite. This assemblage indicates formation at relatively high temperatures (>400 °C) and high fS2 and fTe2 during prograde-stage mineralization. Assemblages of Bi sulfosalts (wittichenite, aikinite, kupčíkite, and paděraite) and bismuth chalcogenides (e.g., tetradymite) in proximal pyroxene skarn are also indicative of formation at relatively high temperatures, but at relatively lower fTe2 and fS2 conditions. Within the reduced distal skarn (chalcopyrite–pyrrhotite-bearing) in marble, cobalt, and nickel occur as discrete minerals: cobaltite, melonite and cobaltic pentlandite. The trace ore mineral signature of the Zhibula skarn and the distributions of precious and critical trace elements such as Ag, Au, Co, Te, Se, and Bi support an evolving magmatic–hydrothermal system in which different parts of the deposit each define ore formation at distinct local physicochemical conditions. This is the first report of kupčíkite and paděraite from a Chinese location. Their compositions are comparable to other occurrences, but conspicuously, they do not form nanoscale intergrowths with one another.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call