Abstract

Cycloids, arcuate features observed on Europa’s surface, have been interpreted as tensile cracks that form in response to diurnal tidal stress caused by Europa’s orbital eccentricity. Stress from non-synchronous rotation may also contribute to tidal stress, and its influence on cycloid shapes has been investigated as well. Obliquity, fast precession, and physical libration would contribute to tidal stress but have often been neglected because they were expected to be negligibly small. However, more sophisticated analyses that include the influence of Jupiter’s other large satellites and the state of Europa’s interior indicate that perhaps these rotational parameters are large enough to alter the tidal stress field and the formation of tidally-driven fractures. We test tidal models that include obliquity, fast precession, stress due to non-synchronous rotation, and physical libration by comparing how well each model reproduces observed cycloids. To do this, we have designed and implemented an automated parameter-searching algorithm that relies on a quantitative measure of fit quality, which we use to identify the best fits to observed cycloids. We then apply statistical techniques to determine the tidal model best supported by the data. By incorporating obliquity, fits to observed southern hemisphere cycloids improve, and we can reproduce equatorial and equator-crossing cycloids. Furthermore, we find that obliquity plus physical libration is the tidal model best supported by the data. With this model, the obliquities range from 0.32° to 1.35°. The libration amplitudes are 0.72–2.44°, and the libration phases are −6.04° to 17.72° with one outlier at 84.5°. The variability in obliquity is expected if Europa’s ice shell is mechanically decoupled from the interior, and the libration amplitudes are plausible in the presence of a subsurface ocean. Indeed, the presence of a decoupling ocean may result in feedbacks that cause all of these rotational parameters to become time-variable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.