Abstract
The ocean will ultimately store most of the CO2 emitted to the atmosphere by human activities. Despite its importance, estimates of the 2000−2022 trend in the ocean CO2 sink differ by a factor of two between observation-based products and process-based models. Here we address this discrepancy using a hybrid approach that preserves the consistency of known processes but constrains the outcome using observations. We show that the hybrid approach reproduces the stagnation of the ocean CO2 sink in the 1990s and its reinvigoration in the 2000s suggested by observation-based products and matches their amplitude. It suggests that process-based models underestimate the amplitude of the decadal variability in the ocean CO2 sink, but that observation-based products on average overestimate the decadal trend in the 2010s. The hybrid approach constrains the 2000−2022 trend in the ocean CO2 sink to 0.42 ± 0.06 Pg C yr−1 decade−1, and by inference the total land CO2 sink to 0.28 ± 0.13 Pg C yr−1 decade−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.