Abstract

Large, nonstandard neutrino self-interactions have been shown to resolve the ∼4σ tension in Hubble constant measurements and a milder tension in the amplitude of matter fluctuations. We demonstrate that interactions of the necessary size imply the existence of a force carrier with a large neutrino coupling (>10^{-4}) and mass in the keV-100MeV range. This mediator is subject to stringent cosmological and laboratory bounds, and we find that nearly all realizations of such a particle are excluded by existing data unless it carries spin 0 and couples almost exclusively to τ-flavored neutrinos. Furthermore, we find that the light neutrinos must be Majorana particles, and that a UV-complete model requires a nonminimal mechanism to simultaneously generate neutrino masses and appreciable self-interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.