Abstract

Transitional disks are protoplanetary disks with opacity gaps/cavities in their dust distribution, a feature that may be linked to planet formation. We perform Bayesian modeling of the three transitional disks SZ Cha, CS Cha and T25 including photometry from the Herschel Space Observatory to quantify the improvements added by these new data. We find disk dust masses between 2x10^-5 and 4x10^-4 Msun, and gap radii in the range of 7-18 AU, with uncertainties of ~ one order of magnitude and ~ 4 AU, respectively. Our results show that adding Herschel data can significantly improve these estimates with respect to mid-infrared data alone, which have roughly twice as large uncertainties on both disk mass and gap radius. We also find weak evidence for different density profiles with respect to full disks. These results open exciting new possibilities to study the distribution of disk masses for large samples of disks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.