Abstract

The formation of CH+ in the interstellar medium has long been an outstanding problem in chemical models. In order to probe the physical conditions of the ISM in which CH+ forms, we propose the use of CH3+ observations. The pathway to forming CH3+ begins with CH+, and a steady state analysis of CH3+ and the reaction intermediary CH2+ results in a relationship between the CH+ and CH3+ abundances. This relationship depends on the molecular hydrogen fraction, f_H2, and gas temperature, T, so observations of CH+ and CH3+ can be used to infer the properties of the gas in which both species reside. We present observations of both molecules along the diffuse cloud sight line toward Cyg OB2 No. 12. Using our computed column densities and upper limits, we put constraints on the f_H2 vs. T parameter space in which CH+ and CH3+ form. We find that average, static, diffuse molecular cloud conditions (i.e. f_H2>0.2, T~60 K) are excluded by our analysis. However, current theory suggests that non-equilibrium effects drive the reaction C+ + H_2 --> CH+ + H, endothermic by 4640 K. If we consider a higher effective temperature due to collisions between neutrals and accelerated ions, the CH3+ partition function predicts that the overall population will be spread out into several excited rotational levels. As a result, observations of more CH3+ transitions with higher signal-to-noise ratios are necessary to place any constraints on models where magnetic acceleration of ions drives the formation of CH+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.