Abstract

Context. Phosphorus-bearing species are essential to the formation of life on Earth, however they have barely been detected in the interstellar medium. In particular, towards star-forming regions only PN and PO have been identified so far. Since only a small number of detections of P-bearing molecules are available, their chemical formation pathways are not easy to constrain and are thus highly debatable. An important factor still missing in the chemical models is the initial elemental abundance of phosphorus, that is, the depletion level of P at the start of chemical models of dense clouds. Aims. In order to overcome this problem, we study P-bearing species in diffuse and translucent clouds. In these objects phosphorus is expected to be mainly in the gas phase and therefore the elemental initial abundance needed in our chemical simulations corresponds to the cosmic one and is well constrained. Methods. For the study of P-bearing chemistry we used an advanced chemical model. We updated and significantly extended the P-chemistry network based on chemical databases and previous literature. We performed single-pointing observations with the IRAM 30 m telescope in the 3 mm range towards the line of sight to the strong continuum source B0355+508 aiming for the (2–1) transitions of PN, PO, HCP, and CP. This line of sight incorporates five diffuse and/or translucent clouds. Results. The (2–1) transitions of the PN, PO, HCP, and CP were not detected. We report high signal-to-noise-ratio detections of the (1–0) lines of 13CO, HNC, and CN along with a first detection of C34S towards this line of sight. We have attempted to reproduce the observations of HNC, CN, CS, and CO in every cloud with our model by applying typical physical conditions for diffuse or translucent clouds. We find that towards the densest clouds with vLSR = −10, − 17 km s−1 the best-fit model is given by the parameters (n(H), AV, Tgas) = (300 cm−3, 3 mag, 40 K). Conclusions. According to our best-fit model, the most abundant P-bearing species are HCP and CP (~10−10). The molecules PN, PO, and PH3 also show relatively high predicted abundances of ~10−11. We show that the abundances of these species are sensitive to visual extinction, cosmic-ray ionization rate, and the diffusion-to-desorption energy ratio on dust grains. The production of P-bearing species is favored towards translucent rather than diffuse clouds, where the environment provides a stronger shielding from the interstellar radiation. Based on our improved model, we show that the (1–0) transitions of HCP, CP, PN, and PO are expected to be detectable with estimated intensities of up to ~200 mK.

Highlights

  • Phosphorus is essential for biotic chemistry, since it is a fundamental component of many important biological molecules, such as nucleic acids and phospholipids

  • We present single-pointing observations of the [] transitions of HCP, CP, PN, and PO and chemical simulations of their molecular abundances towards the line of sight to B0355+508 in order to investigate P-bearing chemistry within diffuse and translucent clouds, the precursors of molecular clouds

  • Since the observations were carried out towards diffuse and translucent clouds, we considered as initial elemental abundances the standard Solar elemental composition

Read more

Summary

Introduction

Phosphorus is essential for biotic chemistry, since it is a fundamental component of many important biological molecules, such as nucleic acids and phospholipids. Diffuse clouds can provide important constraints on P chemistry, since P in these objects is not strongly affected by depletion, meaning that the initial P abundance that can be used for chemical simulations is well constrained (Lebouteiller et al 2006). With this approach we are able to remove an important uncertainty in our model and use a reliable starting point for our chemical simulations. We present single-pointing observations of the [] transitions of HCP, CP, PN, and PO and chemical simulations of their molecular abundances towards the line of sight to B0355+508 in order to investigate P-bearing chemistry within diffuse and translucent clouds, the precursors of molecular clouds. The intensity of the obtained spectra was converted from feaofnfiltleconiwenniancgy(T.rAF∗e)leaffttoiiosnme:qaTuinamlbbteo=a9mFB5ee%fffftem×inpTtehAr∗ea,ttuwarrhegee(rtTeemdFbf)erffeuqniusietstnh,ceuysfrionarngwgatehr.de

Results
Comparison to observations
Discussion: the chemistry of phosphorus
Effects of visual extinction on the P-bearing chemistry
Future observations
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call