Abstract

We present Hubble Space Telescope observations of the upper part (T_eff> 10 000 K) of the white dwarf cooling sequence in the globular cluster 47 Tucanae and measure a luminosity function of hot white dwarfs. Comparison with previous determinations from large scale field surveys indicates that the previously determined plateau at high effective temperatures is likely a selection effect, as no such feature is seen in this sample. Comparison with theoretical models suggests that the current estimates of white dwarf neutrino emission (primarily by the plasmon channel) are accurate, and variations are restricted to no more than a factor of two globally, at 95% confidence. We use these constraints to place limits on various proposed exotic emission mechanisms, including a non-zero neutrino magnetic moment, formation of axions, and emission of Kaluza-Klein modes into extra dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call