Abstract

We present a coherent and detailed Monte Carlo simulation of the population of hot white dwarfs. We assess the statistical significance of the hot end of the white dwarf luminosity function and the role played by the bolometric corrections of hydrogen-rich white dwarfs at high effective temperatures. We use the most up-to-date stellar evolutionary models and implement a full description of the observational selection biases to obtain realistic simulations of the observed white dwarf population. Our theoretical results are compared with the luminosity function of hot white dwarfs obtained from the Sloan Digital Sky Survey (SDSS), for both DA and non-DA white dwarfs. We find that the theoretical results are in excellent agreement with the observational data for the population of white dwarfs with hydrogen deficient atmospheres (non-DA white dwarfs). For the population of white dwarfs with hydrogen-rich atmospheres (white dwarfs of the DA class), our simulations show some discrepancies with the observations for the brightest luminosity bins. These discrepancies can be attributed to the way in which the masses of the white dwarfs contributing to this luminosity bin have been computed, as most of them have masses smaller than the theoretical lower limit for carbon-oxygen white dwarfs. We conclude that the way in which the observational luminosity function of hot white dwarfs is obtained is very sensitive to the particular implementation of the method used to derive the masses of the sample. We also provide a revised luminosity function for hot white dwarfs with hydrogen-rich atmospheres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call