Abstract
This paper presents an extension to the basic particle swarm optimization approach for the solution of constrained engineering design optimization problems. The approach takes advantage of the PSO ability to find global optimum in problems with complex design spaces while directly enforcing feasibility of constraints using an augmented Lagrange multiplier method. Details in the algorithm implementation and properties are presented and the effectiveness of the approach is illustrated in different benchmark structural optimization test cases. Results show the ability of the proposed methodology to find better solutions for structural optimization tasks as compared to other optimization algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.