Abstract

This paper is concerned with a stochastic linear-quadratic optimal control problem with regime switching, random coefficients and cone control constraint. The randomness of the coefficients comes from two aspects: the Brownian motion and the Markov chain. Using Itô’s lemma for Markov chain, we obtain the optimal state feedback control and optimal cost value explicitly via two new systems of extended stochastic Riccati equations (ESREs). We prove the existence and uniqueness of the two ESREs using tools including multidimensional comparison theorem, truncation function technique, log transformation and the John–Nirenberg inequality. These results are then applied to study mean-variance portfolio selection problems with and without short-selling prohibition with random parameters depending on both the Brownian motion and the Markov chain. Finally, the efficient portfolios and efficient frontiers are presented in closed forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.